NV下一代GPU架构在深度学习应用中提速十倍
- +1 你赞过了
【天极网DIY硬件频道】2015年4月15日—中国北京—相较于当前的 Maxwell 处理器,NVIDIA 预计于明年推出的 Pascal 架构 GPU 将使深度学习应用中的计算速度加快十倍。
NVIDIA 联合创始人、总裁兼首席执行官黄仁勋先生在于硅谷举办的 GPU 科技大会开幕主题演讲活动上,对四千名与会嘉宾揭露 Pascal 架构的细节与处理器的最新发展蓝图。
他对听众们说:「得益于过去三年我们在研发工作上取得的成果,我们将从这个价值数十亿美元的改良产品中获益」。
深度学习指的是计算机使用神经网络自主学习的过程,这个趋势的兴起让 NVIDIA 又进一步改进了原本在去年 GTC 即公布的 Pascal 架构设计内容。
Pascal 架构 GPU 的三大设计特色将大幅加快训练速度,精准地训练更丰富的深度神经网络,犹如人类大脑皮层的资料结构将成为深度学习研究的基础。
再加上 32GB 的显存(是NVIDIA 新发布的旗舰级产品 GeForce GTX TITAN X 的 2.7 倍),Pascal 架构可进行混合精度的计算任务。它将配备 3D 堆叠显存,提升深度学习应用程序的速度性能多达5倍;另搭配 NVIDIA 的高速互连技术NVLink来连接两个以上的 GPU,可将深度学习的速度提升达十倍。
在关键深度学习的任务方面,Pascal 架构的性能表现优于 Maxwell 架构
混合精度计算 – 达到更精准的结果
混合精度计算让采用 Pascal 架构的 GPU 能够在 16 位浮点精度下拥有两倍于 32 位浮点精度下的速率的计算速度。
更出色的浮点计算性能特别提高了深度学习两大关键活动:分类和卷积的性能,同时又达到所需的精准度。
3D 堆叠显存 – 更快的传输速度和优秀的省电表现
显存带宽限制了数据向 GPU 传输的速度。采用 3D 堆叠显存将可提高比 Maxwell 架构高出三倍的带宽和近三倍的容量,让开发人员能建立更大的神经网络,大大提升深度学习训练中带宽密集型部分的速度。
Pascal 采用显存芯片逐个堆叠的技术,位置接近 GPU 而不是处理器板更往下的地方。如此就能把输出在显存与 GPU 间往返的距离从几英寸减缩到几毫米,大幅加快传输速度和拥有更好的省电表现。
NVLink – 更快的数据移动速度
Pascal 架构加入NVLink技术将使得 GPU 与 CPU 之间数据传输的速度,较现有的PCI-Express 标准加快5到12倍,对于深度学习这些需要更高 GPU 间传递速度的应用程序来说是一大福音。
NVLink可将系统里的 GPU 数量增加一倍,以共同用于深度学习计算任务上;还能以新的方式连接 CPU 与 GPU,在服务器设计方面提供较 PCI-E 更出色的灵活性和省电表现。
关于NVIDIA® (英伟达™) 公司
自从 1993 年以来,NVIDIA (纳斯达克代码: NVDA) 一直在视觉计算的艺术与科学发展中勇当开路先锋。NVIDIA 公司的诸多技术正在彻底转变显示世界的面貌,使其成为充满互动与探索的世界,这将影响所有人,不论是游戏玩家、科学家还是消费者或者是企业客户。如需了解更多信息,敬请访问:
NVIDIA新闻中心://www.nvidia.cn/object/newsroom_cn.html
NVIDIA新浪微博://e.weibo.com/nvidiachina
NVIDIA腾讯微博://t.qq.com/NVIDIAChina
NVIDIA官方微信:NVIDIA_China
最新资讯
热门视频
新品评测